

2:5

22

L
=

e L N Y T N R Y T A Y Y R Y Y N Y Y S Y T N YR S N N N T TR TR T AT FRCE RIS I Y

AD-A176 701

L. DTN .._'.,._- . .
. Sl B L S e e, e B 2P) S RS MM
PP U PRI RPN, . . W A PP VRO W T W WU G, I S R W WA Ay

4

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

VLSI Memo No. 86-356

December 1986 Contract NOOO14-80-C-0622

A PROPOSAL FOR A PROFILE INTERCHANGE FORMAT

PART I: SYNTAX '(:

PART II: SEMANTICS ELEC
TEX®

FEB 1 1 1887

Duane S. Boning and Thye-Lai Tung

Abstract

T. ' -

This paper examines issues in the design and implementation of a Profile
Interchange Format (PIF) for use in the standard representation of
semiconductor profile and attribute information. A distinction is made
hetveen the syntax and the semantics of the representation; both facets of the
PIF are discussed. Note that this is a preliminary working document, and as
such represents only approximately constantly evolving thoughts and
implementations.

! 0

.+ In’ Part I, syntactic issues of the PIF are examined. Our decision has been to

develop two versions of the format: an ASCII format (for exchange of
information), and a BINARY format (for local use by individual CAD tools).

For the ASCII form, we—have-chosen a highly restricted LISP-like syntax, to
capture hierarchy and to ease parsing of the structure. A binary version of
the format (whieh we call/SNC) has been prototyped, and allows highly
efficient storage and access of PIF information. While the binary and ASCII
syntactic mechanisms have been implemented, work remains to define a standard
semantics (an organization and minimum set of names and data) for the exchange
of process and device simulation information.

Part II examines issues in the semantic representation of semiconductor
profile and device structure information, focusing on the actual organization
of device and profile data. Topics examined include general geometry
representation, association of attribute information with arbitrary parts of
the geometry, a definition-reference mechanism, and transformation
specification. Finally, additional syntax issues in the specification of a
PIF standard are discussed. -

DISTRIBUTION STATEMENT A
Apptoved lor public release;
Distribution Unlimited

Microsystems Massachusetts Cambridge Teleohone
Research Center Institute Massachusetts 16171 253-8138
Room 39-321 of Technology 02139

S T T S Y

s A Proposal for a Profile Interchange Format
oA Part I: Syntax

Part II: Semantics

:: by

Duane S. Boning! and Thye-Lai Tung?

Py

Y
; ; Massachusetts Institute of Technology

’ Room 39-315, Cambridge, MA 02139
box June 4, 1986
o
\‘.‘
<
>

’ Abstract

c“. K
'-: This paper examines issues in the design and implementation of a Profile
l:j; Interchange Format (PIF) for use in the standard representation of semicon-
\I,:: ductor profile and attribute information. A distinction is made between the

e syntar and the semantics of the representation; both facets of the PIF are

. discussed. Note that this is a preliminary working document, and as such
.:‘,; represents only approximately constantly evolving thoughts and implemen-

\‘ tations.

AN In Part I, syntactic issues of the PIF are examined. Our decision has been to

(." : develop two versions of the format; an ASCII format (for exchange of infor-

e mation), and a BINARY format (for local use by individual CAD tools). For
';j the ASCII form, we have chosen a highly restricted LISP-like syntax to cap-
o ture hierarchy and to ease parsing of the structure. A binary version of the
’ format (which we call SNC) has been prototyped, and allows highly efficient

storage and access of PIF information. While the binary and ASCII syntac-
e tic mechanisms have been implemented, work remains to define a standard
::::: semantics (an organization and minimum set of names and data) for the

T exchange of process and device simulation information.

e Part II examines issues in the semantic representation of semiconductor pro-

: file and device structure information, focussing on the actual organization
o of device and profile data. Topics examined include general geometry rep-
,\ resentation, association of attribute information with arbitrary parts of the
:;;j geometry, a definition-reference mechanism, and tranformation specification.
N Finally, additional syntax issues in the specification of a PIF standard are
= discussed.

e Accesion For
-'. . .
2 NTIS CRA& o
o DTIC TAB 0
~ Usannounced a
' I Network addres boning@caf.mit.edu Justification -
T A7 2Network address tung@caf.mit.edu SRR —
Lo \f-.' %

'i:' By LA o -

::4 Dot ibution/

N " Availability Codes
- | Avail ;ndlor

: . ﬁlst, Special

".::". Sttt - DA I L RPN RR S S SN Tt S S SR A Cav e et ..‘..‘.".\f';‘ "'.‘)\-“-\ -.‘u“l.‘-\.‘!\.\\}\-~\- i
Ay, ' ST S T YR VL R A S B S S A L SR SRR S AL R OO

0t ah it R A L) it it e ot et et et A S FIFTITFTITF AL TR

.’

5

22T

B
.

<

’

O
v
AN

£ A Proposal for a Profile Interchange Format
Part I: Syntax
by
Duane S. Boning' and Thye-Lai Tung®

.

A ¢

b
"l

Massachusetts [nstitute of Technology
Room 39-315, Camnbridge, MA 02139

June 4, 1986

7.

o

]

ré
o

AL

Abstract

A proposed syntax for the Profile Interchange Format (PIF) is presented,
suitable for use as a standard representation of semiconductor profile and
device structure and attribute information. A distinction is made between
the actual syntar and the semantics of the representation. For the ASCII
form of the format, we have chosen a highly restricted LISP-like syntax to
capture hierarchy and to ease parsing of the structure. A binary form of the
format (which we call SNC) has been prototyped, and allows highly efficient
storage and access of PIF information. While the binary and ASCII syntac-

s tic mechanisms have been implemented, work remains to define a standard

(‘ semantics (an organization and minimum set of names and data) for the
exchange of process and device simnulation information.

!Network addres boning@caf.mit.edu
i *Network address tung@®caf.mit.edu

R e Ty
- LR T] _-&*...l

. - S
R AT g W I S AR SOR R SR PO SE X S O Oy TS AT SRR 2R O A N NS RORC
LA S S S -‘f‘"‘\ -ﬁ"ﬁi‘;‘hs " A-"'X“;";".).‘-i"_."i‘.‘. pd Y IS N Satth hd

B Y T e B T e A T P T RT ST AT T,

YEEENFTE A . Ty W S @ 4 B e eme—— =

'..
R
E
v
o
"
-

Lz n amn

C g

TV Y YA

' wew

1 Introduction

A number of groups involved in the development or integration of process and device
simulation programs have come to recognize the need for a profile interchange lormat [1],
[2]. The intent of this document is to report ongoing work at MIT in the development
of such a format, called here PIF. The philosophy, guidelines, and goals of the PIF will
be examined. A discussion of the distinction between the format “syntax” and format
“semanctics” is made, and the need for both a textual and a binary expression of the
format is pointed out. We then discuss the binary version of the format in some detail.
and present examples of comparable ASCII formats. Finally, we close with some comments
about the adoption of a standard built on this or another format.

2 Philosophy, Guidelines, and Goals

Before we present the proposed Profile Interchange Format. we need to consider the prob-
lem under attack. This section examines, first of all, the potential uses of a profile inter-

change format. This will be followed by a discussion of the requirements and constraints
on an interchange format.

2.1 Uses of a PIF

In previous meetings of the informal profile interchange format standards subcommittee,
there has been some confusion regarding the magnitude of the work involved in designing
an interchange format. This confusion was due to the various groups of workers envisioning
different uses for the format. In order to be success{ul, development of a working standard
must proceed with all of these potential uses in mind. Development of a standard that
will meet these multiple needs will not be trivial.

There are two major categories of uses for the PIF. First, the interchange format can be
used to transport structure and attribute information from one site to another. Secondly.
some version of the format will be used locally to represent and store information in a
“database” mode. The two uses are not at odds with each other: the need to represent
completely structure and attribute information is common to both. An argument can
be made that “information transfer” is simply a special case of the “information capture”
problem. That is, once we have a general format we can use it either as a database (almost
certainly in a binary form) or as a file transfer format (almost certainly in an ASCII form).

If we accept that the format may appear in two modes, we still must ask to what use the

format will actually be put. The following is a list of possible uses of a profile interchange
format:

¢ As a means for representing process simulation output (both structure or geometry
and attribute information).

7 A\ Bk 5 e SRl SO TSR TS e P R
...... r. AR

ot PR A b 2 TP

SAIER . et .

PR g A

- e e . a-d"a & 4 A _mERm

FUTA T T aTY T d T Vs W ¥ T -T

N }::: e As a standard way of representing profile structures (and attributes of that struc-
) ture), whether these have been produced by simulators, by test or measurcment
equipement, or directly by the user.

e As a means for representing device simulation input structures. This may be a dif-
ferent (more comprehensive) representation than that needed for process simulation
output.

e As a means for representing device simulation results.

2.2 PIF Representational Requirements

The above possible uses of a profile interchange format place certain demands on the PIF.
The PIF must be powerful enough to handle several classes of information; the represen-
tational demands on the PIF are enumerated below.

e The PIF must allow a hierarchy of geometric objects to be specified. This hierar-
chy must include one-dimensional objects (points, grids, boundaries, and regions),
two-dimensional objects (points, segments, elements, various grids, boundaries, and
regions), and even three-dimensional objects (with surfaces and three-ditnensional
meshes as well as two dimensional objects). The representation must be able to
capture the hierarchical geometry inherent in real and simulated structures.

¢ The PIF should allow attributes Lo be defined on any part of that geometrv. These
attributes might be scalars, vectors, arrays, or strings, and may be associated with
any part of the geometry described above.

e A hierarchy of data is needed as well. Thus, one piece of data may be an attribute
of another piece of data rather than simply an attribute of a part of the geometry.

e Lastly, there may be a need to associate various geometries or parts of a geometry
with a piece ol data. This is different than the first need above, where a geometry is
considered to be composed only of other smaller geometries. Here, a structure may
depend on (and therefore need to be associated with) some data value. For instance,
the geometry in a simulation often depends upon simulation time; the interchange
format should be capable of representing this association explicitly.

2.3 Constraints on the PIF

There are a number of indirect demands on the interchange format. These are imposed in
order that the format be accessible to the largest number of applications.

e The format (or some well defined subset of the format) should be simple enough that
application programs can read or write the format directly.

2 Bav Bn St R Bon B By s s Bncii e latoier ot bt it N b B’ Sae hev e fia> St fn= it At A Sat D T e gl JHE R g W S L WL e T
WJ h® Sat Bav e e Bt]

AA

R 2 22 Ly

. .\ =
o The format should require a minimum of “interprctation” of information. The format N
¢ must be able to capture the information, but should not have to know what that
information “means.”
I’:
::.: e The format must be able to coexist with both ASCII and binary formats of data.
::: The amount of information required and generated by simulation. particularly two-
o dimensional programs, is so large that efficiency in storage and access speed is an
* important consideration.
L
L)
N e The format should be compatible in concept with existing standard format work.
2N particularly EDII (3.
Nos
\ -
L e The format should be implementable in standard languages, particularly C and FOR-
TRAN.
3 PIF and SNC
3.1 Syntax vs Semantics
We have found it to be useful to distinguish between the syntaz and the semantics of the
formmat. The problem of developing an appropriate syntax is to find a reasonable form for
storage of data. In our implementation, the syntaz really relers to the general appearance ‘:,;"
of data in an ASCII file. This same data might be stored in purely binary form using “

SNC; while the “appearance” of the data is quite different, the conceptual structure of
the binary file maps directly to the ASCII syntax. The semantics, on the other hand. has
to do with the actual profile or device information expressed using the available syntax.
Development of a standard. then, requires establishing agreed upon conventions of the
kinds of information simulation prograins will read and write, as well as agreeing upon the
syntax of the format itself.

It is useful to decouple the two concepts; as the format evolves, the distinction becomes
more important. General software that can read and write information using the syntax is
the primary programming task. If the syntax itself does not change, and if the semantics of
the format are not coded directly into the syntax, then the semantics can change without
the basic software becoming obsolete. That is. the exact names and type of information

in the “standard™ can evolve over time, while the format syntax and tools for reading that
format remain unchanged.

3.2 ASCII vs. binary

A second important distinction is between the ASCII and binary forms of storage. In our
implementation, the ASCII form is intended for two purposes. First, the ASCII form is
human readable, and can be generated by hand if need be. Secondly, the ASCII form is

m " a Ve Ty M e T8 T w =T Q6

suitable for shipment of information from one site tn another. Because this ASCIT format
serves as the link between different sites, a standard syntax and semantic base is required.

The binary form of the Profile Interchange Format has been optimized for compactness
in the storage of information and for speed in accessing that information. In our view,
the binary form is the ouly reasonable solution for day to day use of an interchange for-
mat. There are two primary obstacles to a binary format which must be overcome in any
standards effort. The first problem in that a binary format depends on computer archi-
tecture, so that the actual binary files can not themselves be uniform across all sites. The
second problemn is that a binary form is not directly human readable. We believe there are
reasonable solutions to these two problems.

The exact nature of the binary format need not be uniform across all sites. Since many
sites will typically be using the same application programns, it is only necessary that there
be a uniform, standard software interface between applications and the binary format.
That is, a standard set or package of routine calls for reading and writing the format
(whether in its ASCII or binary form) is needed; how the information then gets stored in a
local binary file can be site dependent. Our package or library of read and write routines
(which is what SNC really is) is one example of such an interface.

.
L8

7 mm— -

VTS T AT 8 8

The distinctions between syntax and semantics, as well as between the binary and
ASCII form should become more clear once the particulars are examined.

4 ASCII version of PIF

This section examines the syntactic structure of the ASCII form of the Profile Interchange
Format. No suggestions or recommendations are made here for a standard set of names or
data structures, only for a general syntax for textual storage of information.

The basic syntax chosen bears resemblance to LISP. The drawback of a LISP-like
structure, or of any sequential data storage technique, is that directory or name information
is interspersed with the bulk of the data. Thus, retrieval of a specific datum requires
interpretation of the file itself. This drawback is the principle driving force behind the
development of SNC, a binary, random access storage form described in a later section.

The basic grouping of information is an entry, consisting of a name, optional datatype
information, and optional data, as illustrated in Figure 1.

(name [data-type-information] [data)
[(additional-entries)])

Figure 1: Basic PIF syntax.

[y

“ I NS RN NN N
..'.....- e e e a"a - .' ----- LI A -‘..-.~ N

Q R . -‘.-
et T -.".‘\ LR W _\'_-'.\;\L\'.' S _‘-;\ ‘.1.\-\“;,1‘1.,.3‘.3!‘5_.!.4__.&‘3._&.-4»-4-».:1 A LA R LA

The syntax we have chosen is a heavily-restricted form of the LISP syntax, and really
comes to bear only superficial resemblances to LISP. The first word after each ‘(’ must be
the name of the data item. The second field may be either another entry. or it may be a
type specifier such as %string or %int. Some type specifiers require additional arguments,
such as the number of array dimensions and the size of the array in each dimension; these

arguments follow the type specifier (separated by white space). Finally, the data itself
appears. A few short examples are shown in Figure 2.

(date %string “March 4, 1952")
(time %string 12:00)
(surface-states
(fast-states %real 1.5e10)
(slow-states %real 1.2e9))
(arsenic-conc %realarray 1 5
1.5€20 1.51e20 1.5325e20 1.553e20 1.6e20)

Figure 2: ASCII Format examples.

5 SNC

A prototype version of a package to read and write a binary version of the PIF has been
implemented [1]. The SNC package, consisting of a library of C routines, presents a com-
mon interface to Fortran and C application programs wishing to write or read information
in binary SNC files. The actual file structure of SNC is detailed below. A brief description
of the routines making up the interface is presented, and examples of SNC use are shown.

5.1 SNC File Structure

In the prototype implementation of SNC, all directory information and data is maintained
within an SNC binary file as illustrated in Figure 3. Each group of data has a directory
entry associated with it, as shown in Figure 4. containing information on the size of the
directory entry, the name of the entry, the level in the hierarchy of the data. and the
location of the data within the file. These directory entries are sequential with respect to
the hierarchy of the information stored in the file. and are located phvsically neat to each
other in the file.

The directory entries may be scanned efficiently either to determine the contents of the
file, or to locate a particular named entry within the file. This is a marked improvement

s - “n

R - .'» St N T
IR T T B LT S T Bt -- S \ \ RSE RS IR > ;{' i & o IR AN)
SRR Sl Nl DA 3 Yy “.!‘?-P"-h. - i“i‘l\. fk\f i..‘ PO PP W t;f;: £ i 'y l.____

P4

7
AS S

AR o
YO

"
PO R

. s

a&

Directory Section

Data

Figure 3: SNC binary file structure.

entry size byte

[data type byte
level byte
name length byte
name byte/name length|
base unit byte
number dims byte
dimensions | long/number dims|
pointer long
entry size byte

where a “long” is 32 bits and a “byte” is 8.

Figure 4: SNC directory entry.

over the use of “headers” at the start of each group of data, since the data itself does not
need to be scanned in order to locate the data.

5.2 Write Interface — C

One goal of SNC is to allow an application to output compactly and naturally the infor-
mation it wishes. The binary format does not restrict or dictate the actual data structures
used by application programs. Data structures are already in place in existing programs
and would be difficult to modify; furthermore. each application must be allowed to tailor
its own internal data structures to the problem at hand. The intent of the SNC and the
PIF in general is to allow an application program to write or read. in a uniform manner.
information for interchange with other programs. Care has been taken in the design of
SNC to make it possible to mimic very closely typical data structures in conventional high

-~¥

Py

P

?&"xfs LY
na

level languages such as C, Pascal, and PL/I. The following routines make up the SNC
write interface for application programs written in C:

o0 KK

Routines for opening and closing the SNC file:
snc_write open(filename)
char *filename:
snc_write close()

AT,

Hierarchy creation routines:
snc.make_level(name)
char *name;
snc_enter level()
suc_exit_level()

Basic data writing routines:
snc.write_flag/naine)
char *narne;

e snc._write string(name, stringval)
Lo char *name, *stringval;

2 snc_write_real(name, realval)

‘.;"_ char *name:

o

float realval;
snc.write_real_vector(name, size, valuep)

char *name;

int size;

float valuep| ;

[

snc.write.real_array (name, num_.actual_dims, actual.dims, valuep)
char *name;
int num_actual dims;
int actual_dims{num_actual_dims];
float valuepf |;
snc.write_int{name, intval)
char *name;

tnt intval;

. . .

TN SRR I N N TN . s> T -, """. AT
NN NN N e .

«" .
L.~ LS

R LT T s “.\'.,L- . " cataa
COICTOIL VR R, U SRV R R I W WL

PP S S I AP S

At seh S ltat Ll C SRS Gl & A A LS s ARt g LA S A g f.'?‘

Generalized write of array inlormation (element at a time)
snc_write start_real(name, num_write_ditns, write dims)
char *name;
int num.write.dims;
int write_dims{num_write_dims];
snc_write_real_itein(value);
float value;
snc_write_end real();

[AMAIS AL m RS SRS N e

- r
a

5.3 Read Interface — C

The following routines make up the SNC read interface for application programs written
in C:

Routines for opening and closing the SNC file:
snc-read_open(filename)
char *filename;
snc_read _close();

Directory searchand information routines:
snc_locate_entry(name)
char name] |;
snc_get lirectory(name)
char name] |;
entry *snc_get_entry(name)
char *name;
where entry = struct {
int level, type, size, num.dims:
int dims] |;
}
snc_enter_level();
snc_exit_level();

N R ST S B N M DU D ST AT AP T S MNP A S S S RSN S VS I VY SV SN S e

b Mt Ll N A = el CEINERA

(AN L P

NUSERARN SERhRRRRA 4

¥ N
(ARAFS

reia-8 il Lhie e i Shalie SN0 e B SO S i ite fra Y

Basic data reading routines:
snc.read string{valuep)
char valuep| |;

snc_read.int{valuep)
int *valuep;

snc_read _real(valuep)
float *valuep:

snc _read real .vector(valuep)
float valuep(!

Generalized read of array information (element at a time):
snc_read real start{num_.actual_dims.actual_dims)
int num_actual_dims,
int actual_dims/num_actual dimsl;
snc_read real .item(valuep,dim1,diin2.dim3.dim4)
float *valuep;

int diml,dim2.dim3,dimd;

5.4 Examples

The following examples illustrate the use of these routines from inside an application
program. Conceptually, the application programmer may work as though he were writing
out the ASCII version of the format. lis concerns are with the hierarchical presentation
of his data, and in the correct and appropriate naming of that data. The data is put into
a binary form by SNC automatically. and the application is shielded from the particulars
of the storage.

WRITE EXAMPLE

#include "sncdef.h"
#include "sncerror.h"

static float grid(s) = {0.0,1.0,2.0,3.0,4.0};
static float boron{S] = {1.0e20 1.1e20 1.2e20 1.3e20 1.4e20}:
static float arsenic[5] = {5.0e20 5.1e20 5.2e20 5.3e20 5.4e20},

main ()
{ float actE = 10.0;
char *run_name = "test-run";

snc_write_open("testfile.snc");
snc_make_level(run_name);
snc_write_string("Date"”,"April 29, 1986");

10

N R S I
R o L S PPN LY
. . . N AL P L L . . N
e * T M . . . - . . -
PRI VRN ARl g, VUL Wa DU B PSPV PR YA

ot e P R it Sab e it o SNE S S ST £ AR T

. . R ‘-"4. N
e N sl

- A e b A i i e e R T e N S R T
5

P2
A3

~ snc_write_real‘vector("Grid_Spacing",S.data);
snc_makelevel("Boron");

i snc_write_real_vector("concentration". 5, data);

snc_write_real("activation-enery", &actE);

snc_makelevel("characteristics");

snc_write_string("plot-color","RED"):

snc_exit_level();

snc_exit_level();

snc_makelevel("Arsenic"):

§

=
"

g A

k; Snc_write_real_vector("concentration”, 5, data) ;
o snc_exit_level();
hg snc_write_int("Bye", 4);
snc_close():
N }
wN
:"w The resulting SNC file can be either translated to an ASCII file which can be read in
-‘C'_',:' conventional ways, or it can be examined with ” decoding” utilities directly. In either case,
"? the corresponding ASCII format to the above example would be:
;‘;.'.:: (test-run
{:::', (Date %string “April 29, 1986")
- (Grid-Spacing %realarray 1 5
(e 0.0 1.0 2.0 3.0 4.0)
(Boron
(concentration %realarray 1 5
1.0e20 1.1e20 1.2¢20 {.3e20 1.4e20)
(activation-energy %real 10.0)
(characteristics
(plot-color %string RED)))
(Arsenic
(concentration %realarray 1 3
5.0e20 5.1€20 5.2¢20 5.5e20 5.4e20))
(Bye %int 4))
READ EXAMPLE
#include <stdio.h>
#include "sncdef . h"
#include "sncerror.h"
main ()
{ char name[100];
o float conc[100];
e

11

.,) e e - e e T L, Y T T e e T T N - I_'-' v e '..‘-.":.'A;.\. ..".\..'-‘ .
A R L L A A N N R L R S e BRI
.) W v t e e B N LY x

A B R T P I e

3

S e
N float grid[100]; b
o ENTRY_STRUCT *entry:

. int i;

}

: snc_open_read{"testfile.snc");

u_ snc_lucate_entry("test-run");

snc_enter_level();

e snc_locate_entry("Grid-spacing");

‘.'_-: snc_read_real_vector(grid);

\ snc_locate_entry("arsenic");

= snc_enter_level();

= entry = snc_get_entry("concentration");

I_ snc_read_real_vector(conc);

:'_ snc_close_read():

: printf("Arsenic concentration for test was:\n");
:'_{ for (i=0; i<entry->size; i++) printf("\t %f %f\n",grid(i),conc[i]):
.),

~."r‘ o
5 6 Recommendations for a Standard

<

X Development of a standard profile interchange format requires agreement in two areas: -

e Choice of syntax.

e Choice of semantics. A minimal set of names and structures to be used for process
structures, for device structures, and for device simulation output is needed.

The bulk of this document has described a proposal for a syntax (both ascii and binary)
appropriate for device and profile information storage. Little has been mentioned about
exactly what information should be stored, and what conventions should be followed in
expressing that information using the available syntax. While we have been considering
possible choices, work on this part of the interchange format is in a much more formative
state (as of this writing, at least).

The current status of work at MIT is as follows.

e A prototype implementation of the SNC package has been completed (written in C).
e Preliminary C and Fortran interface routines have been defined.

e Utilities to convert from the ASCII to the SNC form. and from SNC to the ASCI]
are currently being implemented.

e An interactive utility to read SNC files and present textual and graphical data is

under development. <
o
12
-
.. \ e A g e et a eI T Tt e e T L e L N A, e \‘-:::\i;:_;;':i‘.{:‘;inln:i\l‘-;\xA
La N T A A A SR T T A SRR Y T R P TS A T ST S B I B W U DWW Y

i o6 ahe i i e Sos it i b it b et R b R RS A A A A At A S e

e e A utility to aid the application programmer in using SNC is under consideration. In
* particular, this utility would perform post-mortem analysis of [aulty files, and aid
the programmer in debugging his use of SNC.

e Consideration of various conventions for expressing typical process and device simu-
lation structures is underway. We consider SNC to be a reasonable solution to the
problem of a profile interchange format syntax. We are now looking at the problemn
of PIF semantics as well.

7 Acknowledgements

These thoughts have developed out of meetings with parties interested in using a profile in-
terchange format (the informal U.S. subcommittee under the direction of Andy Neureuther
and Bob Dutton), as well as with colleagues here at MIT. This latter group includes Duane
Boning, Thye-Lai Tung, Dimitri Antoniadis, Jarvis Jacobs, Robert Harris, Ron Duncan,
and Ralph Iverson.

References

(1] A. R. Neureuther, “Profile Interchange Format,” 1985. Working notes.

(‘ [2] S. Duvall and D. Lucey, “An Interchange Format for Process and Device Simulation,”
Jan. 1986. Pcrsonal communication.

[3] EDIF Specification — Version 1 1 0. Electronic Design Interchange Format Steering
Committee, Nov. 1985.

[4] T. Tung, “SNC: an interchange format for simulation programs,” July 1985. Personal
communications and accompanying software.

13

:) o,
e e A e T D s e T R N S S N

]

A R Tl et S i U e RARARASS S B A SR AR A

o
2
»

'.?:}‘_l‘l“_i _ bl

y .-24- A Proposal for a Profile Interchange Format
Part II: Semantics
by

Duane S. Boning' and Thye-Lai Tung?

Massachusetts Institute of Technology
Room 39-315, Cambridge, MA 02139

November 6, 1986

Abstract

This paper exatnines issues in the semantic representation of semiconductor
profile and device structure information. An earlier paper discussed the need
for both an ASCII interchange format and a BINARY database type format
for local use by the individual tools. Prototype proposals for both the ascii
svntax (PIF) and the binary syntax (SNC) were discussed. This paper, on
the other hand, focusses on the actual organization of device and profile
data. Topics examined include general geometry representation, association
of attribute information with arbitrary parts of the geometry, a definition-

i_e‘,-_ ~ reference mechanism, and tranformation specification. Finally, additional
syntax issues in the specification of a PIF standard are discussed.

NOTE: This is a very preliminary working document, and as such is in a very

incomplete (and probably unintelligible) form.

'Network addres boning ®caf.mit.edu
i Network address tungfreaf.mit.edu
o

4

2 1 Introduction I;.

A number of groups involved in the development or integration of process and device sim-
ulation programs have come to recognize the need for a profile interchange format [1], [2].
The intent of this document is to report ongoing work at MIT in the development of such
a format, called here PIF. The philosophy, guidelines, and goals of the PLF have already
been examined. including a discussion of the distinction between the format “syntax”™ and
format “semantics”. Here, we examine issues involved in the definition of a standard pro-

v
::::. file interchange format at the level of the actual information to be represented by the
N format (the semantics). This discussion is not couched in terms of a final proposal; rather.

aTr
. ¥
A

suggestions on possible solutions to the problemns involved are made.
The primary goals we have for the PIF description of an object are:

l'
19

Clarity of expression: The primitives used should be treated as uniformly as possible.

Uniformity: Understanding the syntax and semantics should require learning only the
philosophy behind the PIF rather than the application of a large nuinber of special
cases. There is a lot to be said for “cleanliness” in the format.

General Mechanisms: The PIF representation should provide general methods for per-
forming primitive tasks; larger problems of representation can then be built out of
these smaller, simpler capabilities (i.e., general definition and reference mechanisms .
rather than hard-coded or ad-hoc implicit references. «J

If these goals can be satisfied, the resulting format should be easy and natural to use.
extend, and implement.

The syntax used in this discussion will be the ascii form of the interchange format (PIF),
discussed previously. The goals outlined above lead us, then, into describing the general
philosophy and mechanisms in the PIF rather than a complete, item by item specification
of the format. The full specification, which is ultimately very important and necessary.
should follow naturally from the philosophy underlying the PIF.

.. . . . C s IO N et “te s Ce
L S N . . PRI N R S - -

* - T T e T s T e T T N W e T T e e e T YT ,_.~_‘ A
IR R P L L BT R R N N N T P R R P N -
ARSI IR SET I IS, o e e B A Al A e A e i ke P B B

LA

-~
rFed. VY W

KX

N

S

a

PPy)

e a

2 Fr X
‘-’\‘-\'r'

ANYINE, |

Q-

. &_‘-

[\ 4 SRR AR

2 "l 'lll {/ l,

-

¢

L YO N S Y]

Od O

W

AL I a0 NI Lt) i e gt b S A a A e CAIAA LA At 6 Y g .

2 Geometry Specification

The geometry specification mechanisms of the PIF allow for both a top-down and bottom-
up hierarchical expression of geometry. This section describes hoth the basic geometry
construct and the different types of geometry specifications.

2.1 Canonical Geometry Constructs

Specification of geometry information in the format is. of course, hierarchical in nature.
In our format. the structure is composed of any number of regions, themselves com-

posed of boundary and grid, and so on. In each geometry keyword, the same canonical
construction is used:

(geometry
[(name optional-name)]
[(reference (name reference-name))]
[(.. defining geometry ...)]

[(... transformations ...)]

[(... attributes ...)]

)

More will be said later on the use of the reference keyword to access already defined
geometries. The transformation and attribute constructs will be discussed later as well.

2.2 Geometry Types

There are two conceptually different types of geometry objects. First, there are those
objects that have a distinct or absolute definition, such as lines, coordinates, faces, and
solids. Secondly, there are also “structural objects” which are conceptually similar, but
may be composed of different type of absolute geometry depending on the dimensionality
of the problem. For instance, a “region” is a geometric object which is composed of a face
in two dimensions, or a solid in three.

2.3 Primitive or Absolute Geometry

The primitive geomelry objects are coordinates. lines. faces. and solids. Each is. per-
haps implicitly, a three-dimensional object. For example. a coordinate has x. v. and z
position information. Solids are defined by faces. which are detined by lines. which are
finally defined by coordinates.

2.4 Structural Geometry

The conceptual objects out of which the structure is actually built include nodes, bound-
aries, bounds, regions. and structures. My gut feeling is that attribute information

3

o PRI
-.s"\\\.-\

Y really should only be associated with the structural geometry of an object, and not with -.:::"
piYA the absolute geometry. That is. a coordinate has no attributes associated with it, but
a node does. Similarly, it makes sense to have attributes of a boundary or a part of a
boundary (the bound), but not of a line itsell. 1 think what this allows is for one to easily
g" abstract out the true meaning of the data association; this meaning is maintained as the
'.j‘%l dimensionality of the problem changes.
ﬁ For example, the two dimensional region defined as
:::‘ (region
oo (dimensions 2)
I.'t:'_' (boundary
~ (bound
(iine ...)
(surface-states ...))
(bound ...))
(material
(type silicon)))
can easily be abstracted up to three dimensions with only a change (o the primitive geomn-
etry. No changes in the attribute information or hierarchy is required:
(region U
(dimensions 3)
(boundary
(bound
(fuace ...)
(surface-states ...))
(bound ...))
(material
(type silicon)))
-*’
&
0
A

.
'.S .

.
. DR T * ., - ‘u " - - - - ~ . Y -, . et et -«
.~"'..."—.‘-.-....-".‘ n '. c. \. l. - I‘. -~' - I"_Q. l' ., v
SO S S MO P T) B o S P T e PN, S S R T DAL

3 Definition - Reference Mechanism

This section gives a couple of examples of the definition and refcrence mechanisms in PIF.
At any point that a geometry is needed. the geometry may be specified in either of two
ways. First, the body of the geometry may actually be specified (leading to a very top-
down approach). Alternatively. the body ol the geometry may be specified by referring to
an already defined geometry (leading to bottom-up definitions). For example:

(region
(name regionl)

with a later reference:

(region
(reference
(name regiont))
(... transforms ...)

‘ft’{.l

El o

(. 3.1 Name Resolution Issues

There are several different approaches in the resolution of names in the above reference
scheme. The basic problem is that the resolution of symbolic links should be as transparent

to the user as possible. In some sense, a better expression of the above example (with the
full type information included) might be:

(region
(name %definition regionl)

)

with a later reference:

(region
(name %reference regionl)
(... transformns ...)

In this example, the resolution of the symbolic reference conld he completely handled by
the calling access function. That is. the definition reference mechanism may well rate a
. new intrinsic data type (on the level of “tstring or “real).

]

- ER e XS e e e
M&JM@ MMA MJMMM(JJAM&M:{:\:{:\:&“f‘_{g;w

SR AN IR TR W

A second issue involves the resolution of the name itsclf. I am assuming that names are }'3
scoped in some sense. Resolution of the name “regionl” within the set of region names
requires looking back for the last definition of that name in the file.

W

SN

AR
I

.
s

6

o - "
- ‘.

O .
o . ."-‘."“l‘n’ .-.-. . ‘. NS
-;* \.h \i‘_.\g\).‘-i\ "_;.h.\.\ .\i\;\l\l nYa \i}.m.‘.u; aa . m,,‘w EA»—A‘A.‘,“‘;—A e .‘,mm ~ }.‘...]

4y
D
A N

2, ,. - ':_'. ’l_

R
DN M Sl M P S

g

Y -

;P P .J.':';' ..' ;

N

SHARR

-'c’n‘;"o{‘

XA

- ‘-..“.....>..,
R FROAIR YO

4 Attribute Association

Attributes can be associated with any structural geometry. The general mechanism for
association is to include the attribute construct within the definition of the geometry. Note
that the attribute information may itself be complex.

(region

(material
(type silicon)
(orientation 100})

Note that the keyword is the tvpe of the attribute itsell. Those applications that do not
recognize the keyword can skip the definition of the atiribute entirely. The data is defined
to apply over the entirety of the geometry defined. In the above example. the material
properties apply to the whole region. Data applying to. say, a bound of the region would
be associated within the bound construct.

4.1 Data Definition and References

Just as with geometry constructs, the same naming (definition) and reference mechanisms
apply:

(material
(name default-silicon)
(type silicon)
(orientation 100))

with a later reference of
(region

(material
(reference
(name default-silicon)))

-3

LI) ~'§ . ..1
Y \-.‘.

woaTe
L

)

A AN N S atie 'l ol L oNE o o "‘

5 Tranformation of Coordinate Data

One of the primary goals of the hierarchical geometry specification is that higher level
geometries be specified using lower lever geometries. It is very desirable that lower level
geometry be “reusable” within other geometries. There are two types of needs in building
up a large geometry. The first is to simply substilute pieces of similar dimensionality
(tranform a region at one location into a region in another location). A second need is
more involved: the ability to change the dimensionality of an object. For instance. a two-
dimensional region may be constructed out of several one-dimensional regions. The two
very different mechanisms involved will be discussed below.

5.1 Default Coordinate System

As mentioned before, each of the primitive geometry components is implicity a three-
dimensional object. The assumed coordinate system is x into the silicon from tl:e surface
(in keeping with one-dimensional simulator convention), for y to be along the surface of
the silicon, and for z = z x y (coming out of the paper). Unfortunately, the conventions
used by one and two-dimensional simulators is in conflict. An alternative may be to define
a default interpretation in two and three-dimensions which is different than that in one.
but such a special case does not seem very clean.

5.2 Transformation Mechanisms (75 |

Each structural geometry construct may have a transform associated with it. This
changes the values of the three-dimensional coordinates within the scope of that geom-
etry. For instance, a coordinate defined as (1.0, 0.0, 0.0) may have a translation tranformn
at a higher level in the geometry, so that at that higher level the coordinate appears as
(1.0. 1.0, 0.0). the general form of this translation construct would be:

(transform
[(translate dx |dy])]
{(rotate theta)]
[(Tmatrix r1l r12 r21 r22 tl t2)]

These transformations are shown for the two-dimensional case. A general approach to
transformations is to use homogeneous coordinate systems. as described below.

5.2.1 Homogeneous Coordinates

A very clean and powerful mechanism for specification of geometric tranformations result
from the use of homogeneous coordinate systems [3i. These allow translation, scaling. and .

8

g e o A A

rotations of objects (or. equivalently. coordinate systems) to be uniformly treated as matrix
multiplication operations. A vector coordinate in two dimmensions (r y) becomes (r y 1).

1 0 0O
The matrix operation for translationis T == | 0 1 0 | while rotation is expressed with
dr dy 1
cosf sind 0
R(0) = | —sinf cosf 0 |. The real advantage of homogencous coordinate tranforma-

0 0 1
tions is that successive transformations are very easily composited. A single tranformation
may involve first a rotation, then a translation: (z' y' 1) = (r y 1)R(A)T. The cumulative
tranformation matrix M, however, can be constructed once and used instead: M = R(6)7T.
so that (' ¢ 1)=(z y 1)M.

Thus, an arbitray number of nested transformations may be applied (which is important
in that we want to allow an arbitrary nesting of geometry specifications). Note also that
the special form of homogeneous matrices allow eflicient multiplication that is much less
involved than the full matrix multiplication.

5.3 Construction Mechanisms

Unlike similar-dimensional transformation mechanisms, additional construction mecha-
nisms are needed when a geometry is to be “constructed” from lower-dimensional objects.
(;Z The constructors described in [2] are excellent examples of the need and utility of such a
capability.

y
]
J.

et S Rl it S R} Y Ag T had ™ s ™ e dTeT T 4T "
Eah e S AC A) 14 S L RS A et et S SR S X kM R Aot iUndt O A Al MRS AL ARl AL i bl I A A A A A RO S ‘

a s, b,
FX AW

5

AR

ey
RN
s:_'.
e [PR el
e 6 Additional Syntax Issues
AN '
While the syntax of the interchange format has been diccussed previously " . additional
", comments are appropriate Lo explain somne of the syntactic choices made in the PIF as it
\: has been used in this document,
X
“~

6.1 Restricted - Data on Leaf Nodes

First of all, we have chosen to restrict actual data to the leal nodes of the representation.
Rather than use a highly position dependent format. we demand that every piece of in-
formation carryving any semantic weight be accompanied by a kevword defining the tyvpe
of information involved. Note that this is a departure for the syntax of EDII. We belicve
that this restriction increased readability and explicitness in the [ormat. and allows for
true extensibility in the format.

As an example, consider the two similar definitions below. The first is an EDIF-like
construct. the second. a PIF equivalent:

(line 1 84 3short1.11.1.2.91.21))

(line
I[dentifier 1))
Origin 8) (N2 J

Fernllrlus 1)

point 1.1 1.)
point 1.2 .9)

(

(

(

(NumberlnteriorPoints 3)
(

(2

(point 1.2 1.))

Of course, the primary disadvantage of the second specification is that it is much more
lengthy than the first. The advantages. on the other hand, are that each of the implicitly
defined (by position only) values are made explicit in the second. The addition of a
parameter to the line statement at some [uture time, then, will not change the form of the
line statement itself. A new attribute of the line statement would be added. and upward
compatibility is trivially preserved.

The disadvantage is the increased length of the description. The resolution of this is
accomplished through the keyword definition mechanism of EDIF. which has additional
advantages as well.

6.2 Indentation notation

An alternative way of expressing the above data structuring is to include an explicit num-
bering for the indentation. This. for instance, is more in keeping with the format that the

10

. . el o . . o .
I:I‘.'.):-. '-."“'-".f o U S RIS NN ol - ,J . J{{‘
L O S R R RN LS \.\.\.ﬁ.\.\.)‘\-h_;u“___l_g.‘._h._\. RO " et Aa . AL-A_-E e aed o a ;_.Afj

w v v w
el

T e
. .

.

a

.
v - <

-:n.;l.;"; v

3

2

SNC interactive browser uses to convey the data structuring to the user. For the above

case. the same information could be presented as:

l. line

(3]

Identifier Stinteger

(%]

Origin %integer

Terminus “tinteger
NumberlnteriorPoints %integer
point “trealarray

point Srealarray

point “realarray

[S o) !\J to

(3%

[t should also be noted that several options are available in the SNC2PII" translztion
utility currently in use. These allow the suppression of type information. of all data. or of
all arrav data. These options. then, generate an ascii “suimmmary” rather than a complete
PIF description from the local SNC database.

6.3 Keyword Definition

The kevword definition mechanisin satisfies several very important needs. First. it provides
a means for dramatically shortening the ascii representations of any construct in the PIF
file. Secondly, it provides a very clean mechanism for the extension of the format. (both the
extension of the “standard” format, and for “local” enhancements by the user). Finally. it
provides a means for making the actual semantic conventions explicit.

In essence, the keyword definition construct allows the definition of a new keyword. and
can make explicit the association of position dependent parameters with fully paranthesized
substitutions. The concept is best explained with an example:

(kevword
(name line)
(formal id)
(formal startid)
(formal endid)
(formal numpoints)
(extra datapoints)
(build
(key lineobj)
(build
(key Identifier)
(tvpe “string))
(value id))
(build
(key Origin)

11

~, \'- "
.‘.._._.:_. a’ .L‘l_ ..!_ JL JL\J\‘L\..

“"\A\\'

T R TNV Y

arafedtt e (shinihdaiman g P IRIPANPROIE I e oF &R Ne sl s S

(type %string))

(value starlid))
(build

(key Terminus)

(type %string))

(value endid))...)

Note that the base-level data type is also specified in this construction. That is. it is made
explicit that the Origin keyword will be a string or an integer, il that is its type. Once
defined. the line construction as it appears in the first example above can be used inside
the PIF description. To external programs referencing the description, they can directly
access the subfields within the (line ...) construct through their full keywords (you might,
for instance, request “line.Origin” from inside the application program).

6.3.1 Standard Keywords

The PIF “standard” consists of the agreed-upon keyword definiti~ns. These can be in-
cluded explicitly in a transmitted PIF flile as a preamble of keyword delinitions. As the
“standard” evolves, then, these old descriptions will still be readable, since they are not
coded into the syntazr explicitly. The preamble provides a link between a fully EDIF-like
definition of the PITF, and the more general SNC-like description of the PIF.

Having described keywords and the transformations between the short and full descrip-
tions of a PII construct, we can go on and presume a set of standard keywords and use
the abbreviated form in the examples to follow.

12

R S SRR)
P R T D
..

- - - . - - - - - - . - T CaP) - - - - e T, L - -

7 e S P, L P VA Wl VAR PRt i e e e e Lt e e
. 7. . S e N A e T e TN e T e)

F S el e el PRI L'.-;_"-.','.':- e e RO RN G R e

2,

]
3
Ll
.,
0
.
N
(
!
.
'

ts RN e s "2 P

LysodimmeY v,

4

n\\’ - A .. . -
1
o
P,
o
-
‘lf' - . .
N 7 Standardization Issues
o The majority of this paper has discussed the appearance and organization of the ascii
:' profile interchange format. Little has been said about the binary forimat. A couple of
“M guidelines about the characteristics of the binary format follow.
R :
7.1 Access Functions
oY
_.': While it is agreced that standardization of the interchange, ascii level PIF is critical, less
- attention has been paid to the need for standardization of interfaces between the tools and
VA the local databases. Not only should it be possible to easily transler wafer information
o between different sites, but it should also be relatively easy to transfer actual tools between
” different sites. Agreement upon what the interface between the local database and the tools
N themselves is thus also very important.
..‘:.
Ly 7.2 Conceptual Congruence
-~ It is important that the “view” that applications tools have of the local and interchange
_:.:: formats be essentially identical. In fact, it should be possible to substitute the actual I'IF
'_:::: representation with the local database entirely. This may require a different iinplementa-
-::j: tion of the access functions, but the application program should not care about how the
N information is actually stored.
, @
‘-“'v
\‘:-‘
\:_-
-
A
A
l.¢
ol
CAL
.7
n’.:/
UL
4
=
o
I.
o
o
S
ALY
AR
)
‘-’\
e N
e
. s
l',:: S
NG 13
’..4
‘e @
s
P~
<4 ,
IR INTRT I RIS T Py S Iy -"l.*- '.- PR AT TR AL AN

L |

=
2,

LS

I s

£

L4

W

g
“s

_\.
e

e

%
5%
]

- S
LYRSC S Tty

M S

ot b 2 4 B8Rt et b wi ek dade Sl SR AL AR Nl S S

AR R SR

8 Examples

Two examples are included here. The first is a simple, one-dimensional Suprem-II like
geometry. The second is a PIF description for the information currently output by MINI-
MOS. Note that these examples have not yet been made to conform to the description of
PIF in this document. They only presented here as a quick starting point.

8.1 One-dimensional Example

{structure
(header
(tool Suprem-I1I)
(date "November 9, 1986")
(description " Example of 1D Structure PIF Description™))
(dimensions 1)
(units microns)
(region
(name "oxidation barrier”)
(boundary
(point (coordinate 0.0))
(point (coordinate 0.2)))
(material
(type nitride)))
(region
(name " pad oxide™)
(material
{tvpe oxide))
(boundary
(point (coordinate 0.2)) ;The origin actually lies “outside” the region here.
(point (coordinate 0.3)))
(tabular-profile
(grid
(tvpe difference)
(number-spaces 10)
(xvalues .01 .0101)
(laver-thickness 0.1) :These parameters speciflic to Suprem-111I grids.
(layer-dx .01)
(laver-xdx .01))
{boron
{roncentration
(nodal-values 1.lel5 ...)))))
(region

14

wr e . IR
A S R SR SR L L S S A S NS

.—\,-.-,-r-:v,v;r;rr'.r"_r_“r’"f, LA e T T e A R T et T SR B

R -+ LEab i’ vt) PIHTFTIRTRIITFVER KN et FTENK ! _".FJ'.?.".'TI_.‘J.‘F_"J_'\"M“T."r:?:r;“r."
0
0
&
by
; -:; (name "underlying silicon™)
- : (material
(type silicon)
j (orientation 100))
-:: (transform :In this example. the silicon grid starts at 0.0.
bt (translate 0.3)) ;In the structure, then, all x pts have 0.3 added to them.
G (boundary
S (point (coordinate 0.0))
: (point (coordinate 1.0)))
N (analytic-profile
L (boron
- (concentration
, (constant-value lel5)))
: (arsenic
~ (concentration
2 (gaussian
2 (prefactor 1e19)
- (range 0.2)
~ (straggle 0.017)))
N (implanted))) ;Another example of a simulator-specific parameter.
N) (thickness 1.0))
6 (temperature 1Also Suprem-11l specific.
I (degreesC 1000.0)))
X 8.2 MINIMOS Example
(Contacts
. (Source
. (Voltage ...)
. (Current ...)
:-f (Hot-Electron-Current ...))
i (Gate
. (Voltage ...))
> (Drain
" (Voltage ...)
v (1D-Current ...)
(2D-Current ...)
y (Avalanche-Current ...)
2 (Hot-Electron-Current ...))
2 (Bulk |
k- (Voltage ...) |
o (Avalanche-Current ...) ‘(
.
: 15
d
»
o

\'-’\

p) ‘\‘.- L r g ,‘-.-’\ \r'.*‘. 'v(’- _‘-.‘\-
NN E BN IEN B SPN 0 A N M e AT RLTE

1

."V’W‘."I“'H’ LY “V}'va}‘._\’t_;‘v P L™ J""T

(Hot-Current ...)))
(Physical-Parameters
(Fermi-Voltage ...)
(Flatband-Voltage ...)
(Work-Function ...)
(Terminal-Voltage ...)
(Oxide-Capacitance ...)
(Junction-Depth ...)
(Subdiffusion ...)
(Debye-Length ...)
(Intrinsic-Concentration ...))
(All-Regions
(Nodal-Data
(Rectangular-Grid
(X ..)
(Y ...))
(Electrostatic-Potential ...))
(Lateral-Offset-Data
(Rectangular-Grid
(Y ...) .
(Lateral-Field ...) @
(Vertical-Offset-Data ...)
(Rectangular-Grid
(Transverse-Field ...)))
(Silicon-Substrate
(Nodal-Data
(Rectangular-Grid
Doping-Concentration ...)
Electron-Fermi-Level ...)
Hole-Fermi-Level ...)
Llectron-Concentration ...)
(Hole-Concentration ...)
(Avalanche-Generation ...)
(Space-Charge ...)
(Lateral-electron-mobility ...)
(Transverse-electron-mobility ...)
(Lateral-hole-mobility ...) S

Lty
a

(
(
(
(

16

L] -, - IO I A NS S R . F I IR S 4 """f.-‘_'.'l'"ffq‘-‘.‘."f?d‘
T

A KGLAERL LELLGLEG L LALAAE AT o' L 2 ' oG N ST S ST TR P SRt R, Tal Rt e Bie® T et it et S R R it D LR Al Al Nl T T R

o X]
e

.
o
v e -

NI R (Transverse-hole-mobility ...)
1A - (Electron-temperature ...)
o (Hole-temperature ...))
‘;’, (Lateral-Offset-Data
"% (Rectangular-Grid
) -

\: (.\ ...)
e)

(Y ...)

(Lateral-electron-current ...)

:.{3: (Lateral-hole-current ...))

::.'j (Vertical-Offset-Data

S (Rectangular-Grid

o (Y ...))

,': (Transverse-electron-current ...)
'_::f (Transverse-hole-current ...)))
3

XN
AN A NN Y,

o

.
-t
- »
P
5
»

17

rs

Ly s':‘.'

<!

P

~.

*
&

L PO AT R I e

References RS

1" A. R. Neureuther. “Profile Interchange Format.” 1985, Working notes.

2° 8. Duvall and D. Lucey, "An Interchange Format for Process and Device Simulation.”

Jan. 1986, Personal communication.

3 J. D. Folev and A. Van Dam. Fundamentals of Interactive Computer Graphies. Read-
ing. Massachusetts: Addison-Wesley. [9&1.

"t D. S. Boning and T. Tung. “A proposal for a profile interchange format.” June 1956,
MIT CAF Project working notes.

IR

- *. T. c. ‘. sy --. “w " - * e
A R LR DU AP BLRRICNS
ToUT N o N Te N T gt T gt T e g s e e g 8y y

PR IO o L
RN oA
{'n':\ t" e, ':_.QM'I‘L\.::_‘

b

Rk VRS RS REN 20N B 6 h t 1ot

s

-
"

1
i
L
J

a 8 2 a

.}.'-.‘u \ &

- '-'. ... -..

(0
|
N
N

WM N

qe e
*ete’a’s
-«

L)
-

—
e

|

‘,
I!
fl
.
o,
v,

